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Disorder in a Disilver Azacryptate Structure 
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In the course of our current program of work on azacryptand 
chemistry,’ we have become increasingly alert to the possibility 
of disorder in cryptate structures arising from alternative 
positions2 for the cationic guests. We believe it is worth 
drawing this facet of azacryptate chemistry to the attention of 
readers, to avert potential misinterpretation of crystallographic 
data. 

The disilver azacryptate AgzL(C104)~ (l), obtained3 by [2 + 
31 condensation of tris(aminopropy1)amine with terephthalal- 
dehyde, is an interesting case in point. Because of the “soft” 
nature of the sp2 N-donors, ligands of hexaamino type have 
proved4 particularly valuable in stabilizing low oxidation states. 
Higher oxidation states, e.g. Cu(JI) or Au(III), are seldom found 
encapsulated within imino as against amino5 cryptates. That 
the product of Ag(1) template condensation of tris(aminopropy1)- 
amine with terephthalaldehyde, as with other dicarbonyls,2b is 
a disilver(1) cryptate comes as no surprise. 

The structure of 1 was solved by direct methods,6-8 which 
revealed most of the structure shown in Figure la. This initial 
model was refined in several least squares cycles, the resulting 
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Figure 1. Perspective views (30% probability ellipsoids) of (a) the 
major and (b) the minor components of the disordered structure. 
Selected bond lengths (A): Agl-N1, 2.500(8); Agl-N3a, 2.192(6); 
Agl-N3c, 2.196(4); Agl-023, 2.68(1); Ag2-N2, 2.457(4); Ag2-N4a, 
2.293(4); Ag2-N4b, 2.278(4); Ag2-N4c, 2.303(4); Ag1’-Nl’, 2.47(3); 
Agl’-N3a’, 2.21(2); Agl’-N3b’, 2.41(2); Agl’-N3c, 2.43(3) Agl-Ag, 
27.44(1); Agl‘-Ag2, 7.09(2). 

difference map revealing a highly significant (ca. 20 e k3) 
peak inside the cryptand and only 1.5 8, from Agl. The short 
distance from this peak to the silver atom made it unlikely that 
the peak represents a donor atom and likely that it results from 
a disorder involving the silver atom. Closer inspection of the 
difference map revealed an alternative set of atom positions for 
much of the surrounding section of the cryptand ligand which 
resulted in coordination geometry for the alternative silver 
position (Agl’) which is virtually indistinguishable from that 
about the (ordered) silver atom Ag2. The refinement was 
continued as described below using this disorder model; it 
converged with the major component having approximately 78% 
occupancy, 22% occupancy for the minor component and 
conventional R = 0.048 (20 data). The resulting conformations 
are shown in parts a and b of Figure 1, respectively, and the 
relationship between the two arrangements is shown in Figure 
2. 
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Figure 2. Composite view of the two conformations. 

The fully ordered silver atom (A@) has approximately 
trigonal pyramidal coordination geometry. It is bonded to three 
imine nitrogen atoms in the trigonal plane (out of plane distance 
0.20 A toward the bridgehead amine); the apical bond (Ag2-N2 
= 2.457(4) A) is considerably longer than the other three (mean 
Ag2-N(imine) = 2.29 A). The major occupancy site of the 
second silver atom (Agl, Figure la) lies at the edge of the 
cryptand cavity and shows rather irregular geometry. Agl is 
coordinated to two imine nitrogen atoms (N3c and N3a), the 
bridgehead amine (Nl), and, via a rather long interaction, to 
one oxygen atom of a perchlorate counterion. As observed for 
Ag2, the Agl-N1 distance (2.500(8) A> is significantly longer 
than the Agl-N(imine) bonds (mean 2.194 A). The difference 
in mean Ag-N(imine) bond lengths between Agl and Ag2 
probably reflects ligand constraints about Ag2. 

Agl’ (Figure lb) is the alternative (22% occupancy) position 
of the Agl atom. As shown in Figure 2, the conformation of 
the ligand is also disordered in the region around Agl and Agl’. 
The largest difference is in the conformation about N3b; in the 
major component this donor is not coordinated and itslone pair 
is directed out of the cavity. In the minor component the 
corresponding imine (N3b’) is coordinated to Agl’ and the lone 
pair is necessarily directed into the cavity. The positions of 
the other donor atoms and of some of the methylene carbon 
atoms (Nl, Cla, Clb, C3a, C3b, N3a, and N3b) are also 
sufficiently different to give rise to separate peaks in the 
difference Fourier maps. The distances and angles about Agl’ 
are less well defined than those at the other metal positions 
due to the difficulty of locating the minor components of the 
light a tom from difference maps; however, the strong similarity 
between the coordination environment at Agl’ and at Ag2 
suggests that the model is essentially correct. 

The crystallographic results are supported by magnetic and 
spectroscopic data. As expected, magnetic susceptibility mea- 
surements confirm the diamagnetism of the complex (should 
confirmation be required), establishing the + 1 oxidation state. 
(In a nonplanar environment, the +III oxidation state is, of 
course, associated with paramagnetism.) No ESR spectrum is 
observed, ruling out the +II oxidation state. 

‘H NMR spectra are complex and fluxional in the methylene 
region at both 298 and 230 K, but the low field (7-9 ppm) 

Table 1. Comparison of Interatomic Distances (A) in 1 with 
Equivalent Distances from ref 12 

1 at 123(2) K ref 12 at 296 K 

Ag2-N2 
Ag2-N4a 
Ag2-N4b 
Ag2-N4c 
Agl-N1 
Agl-N3a 
Agl-N3c 
Agl-Ag2 
Ag 1-Ag 1’ 

2.457(4) 
2.239(4) 
2.278(4) 
2.303(4) 
2.500(8) 
2.192(6) 
2.196(4) 
7.439(8) 
1.528(4) 

Agl-N1 
Agl-N2 
Agl-N7 
Agl-N6 
Ag2-N4 
Ag2-N3 
Ag2-NS 
Agl-Ag2 
Ag2-0 

2.455(5) 
2.301(5) 
2.286(6) 
2.308(5) 
not listed 
2.18 l(6) 
2.198(6) 
7.409 
1.586(4) 

part of the spectrum is well resolved. A singlet of relative 
intensity [4HI9 at 7.1 ppm corresponds to the aromatic CH signal 
while at 230 K an 8.6 Hz doubletlo at 8.38 ppm represents the 
imino CH resonance. Our experience with disilver azacryptates 
leads us to expect splitting of coordinated imino CH 
resonan~es , l~ ,~J~  at least at low temperatures, because of 
coupling to lWAg [35{ lWAg, ‘H} e 7-9 Hz]. The simplicity 
of the spectrum of 1 suggests that the minor component la of 
the solid state disorder dominates in solution. However, weak 
additional features are evident, particularly in the 298 K 
spectrum, which indicate that additional conformations are 
increasingly populated as temperature increases. 

In summary, 1 exhibits no evidence to support the claim made 
recently in this journal12 that the structure is “the f i s t  mixed- 
valence silver(1,III) cryptate” (see Table 1 for a comparison of 
the two structures). Rather, it seems that failure to interpret 
disorder in the structure has misled the authors into assigning 
the electron density corresponding to Agl’ to a (nonexistent) 
light atom. The moral is clear: independent corroboration by 
analytical or spectroscopic techniques is essential before any 
such claim based on crystallographic data can be accepted. 

Caution ! Perchlorate salts of silver salts with organic ligands 
are potentially explosive. Only small amounts of material 
should be prepared, and these should be handled with caution. 
1 presented no hazard when used in small quantities. 
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